
NIH HPC Object storage
system overview

Tim Miller
NIH HPC Systems Staff
btmiller@helix.nih.gov

https://hpc.nih.gov
January 9, 2018

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Basics of object storage

• “Web Scale” storage
• Highly reliable (dispersed over multiple sites)
• Easy to expand (just add more disks)
• Accessed via simple list, put, get, delete semantics (examples forthcoming)

• Different from file based storage systems
• Objects are accessed by NAME, not PATH
• Completely flat name space
• No concept of directories, but “/” is a valid character in object names
• Data and metadata are stored together with the object (sometimes true in file

storage systems as well)

The NIH HPC object storage system

• https://hpc.nih.gov/storage/object.html
• Dedicated for use by NIH HPC system (helix, biowulf) users
• Accessible from Helix, Biowulf, and compute nodes
• No Globus or Helixdrive (more on this later)

• Geographically distributed (B12, Shady Grove)
• However no off-site back-ups (tape or otherwise)

https://hpc.nih.gov/storage/object.html

Components of the system

• Manager
• Staff interacts with it
• Used for provisioning,

monitoring, etc.
• Accessor
• Primary point of user

interaction
• Storage server
• Actually holds data
• No direct user interaction

Manager

Accessors

Storage
servers

Components of the system

• Manager
• Staff interacts with it
• Used for provisioning,

monitoring, etc.
• Accessor
• Primary point of user

interaction
• Storage server
• Actually holds data
• No direct user interaction

Manager

Accessors

Storage
servers

You don’t need to know anything
about the physical hardware.

However, if you want to write your
own custom access routines, you need
the accessors’ addresses.

Logical View

8

Logical view components (1)

• Each user has access to one or more VAULTS
• These are like buckets, for those familiar with Amazon S3, except they are

created by system administrators.
• The vaults are containers for objects
• Objects contain both data and metadata (we’ll see examples)
• Physically, objects are divided up and different parts are sent to multiple

different storage servers
• The system is designed to be able to lose a certain number of storage servers

and still be able to reconstruct objects.

Logical view components (2)

• I/O operations are performed via accessors
• Use S3 operations layered on top of the HTTP protocol
• Six accessors: os{1,2}naccess{1,2,3}
• A RESTful API (REpresentational State Transfer) – see next bullet point!
• When configuring some programs to access the object store, you must specify which

accessor to use
• We’ll see examples later

• Take a REST!
• A RESTful API handles transactions
• PUT, GET, DELETE
• No multiple-part requests!

• Pre-written programs (and your own)

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Our first example: just showing off

• Key commands
• obj_df
• obj_ls
• obj_put
• obj_get

• Key take-aways
• Object storage is not accessed like disk storage
• We have to use special tools (or write our own)
• Programs need to be directly aware of the object store to use it, or files must

be staged to an intermediate location.

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Use-cases for object storage

• Read-intensive workloads
• Object storage is much more efficient at reading than writing.
• An entire object has to be re-written for each change

• Computationally expensive to process and disperse the data
• Lots of over-writing

• Static data
• Related to the above
• Data that doesn’t change often, but still used
• E.g. reference genomics files

• LIMITED archiving
• Can’t guarantee data will remain forever.
• E.g. intermediate files

When not to use object storage

• Content of data changes
frequently (database
updates)
• Data will not need to be

repeatedly read (use
scratch or lscratch)
• Only need to read part of

each unit of data (object
store will read the whole
thing usually)
• Reads are performance

critical

Rules, policies, and archiving

• ALL NIH HPC policies that apply to other HPC storage systems apply to the
object store
• No personally-identifiable information (PII)
• No personal health information (PHI)
• Archiving OK, but it’s time-limited and should be discussed with HPC staff

• NO back-ups or snapshots
• If you delete something from the object store, it’s gone (unless you have another

copy somewhere).
• Likewise, if you overwrite an object, the original copy is unrecoverable.

• Reduce metadata operations
• As much as possible, avoid listing vault contents – it’s slow!
• Use a regular scheme for naming objects or keep an off-line index

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Requesting object storage

https://hpc.nih.gov/nih/object_request.html

• Accessible from within the NIH network (and VPN).
• If off-campus, e-mail staff@hpc.nih.gov.

Standard information about
yourself and what you want
the object storage
allocation for.

Unlike your data directory,
you can choose any name
for your vault (within
reason). If you leave this
blank, the vault name will
be the same as your user
name.

You also have to tell us how
big you would like your
vault. We generally will not
give out more than 20 TB
until you show that you can
make effective use of it.

For your justification, be
sure to specify why you are
requesting object storage
rather than disk storage.
Letting us know whether
you plan to use your own
programs or HPC developed
or installed tools is also
helpful.

Remember to check the box
at the bottom indicating
that you understand what
object storage is and the
policies associated with its
use.

Once you have submitted the form

• You’ll get an e-mail confirmation
• The HPC staff will contact you if there are any questions about your

request
• Your storage will be set up. You’ll be given a set of access keys that

you can use to access your space.

Hands-on: setting up access

• I will distribute access keys to individuals/teams
• Note: the vaults used in this class are TEMPORARY

and will be deleted a day or so after the class ends.
• In other words, don’t store anything you actually want

to keep (only) here.
• Create a file /home/$USER/.boto
• Replace $USER with your user name
• Make sure the file is only readable by you

• Put the following contents in the file:

Hands-on: setting up access

• Check that you can “see” your vault when you do
obj_df.
• Note – obj_df will not work with temporary student vaults.
• How much space do you have on the object store?
• Tip: obj_df reports value in bytes, which is not very easy to

read. Use “obj_df -h” to get human-readable values.

• Run “obj_ls” to see the contents of your vault
• This will work with temporary student vaults
• If your vault name is not the same as your username, use

“-v <vaultname>” to specify which vault.
• Is there anything in your vault?

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Overview of staff-developed tools

obj_chmod described later!

Using obj_df

• Shows you how much space you have on vaults you have write access to.
• Can get the same information (in a slightly different format) via checkquota
• Does not work with the student vaults for this class!

Using obj_ls

• Lists objects in a vault
• Owner ID is specific to the object store (i.e. not a Linux UID)

A prettier view

• -h: sizes are human readable
• -m: only print out files that match a given pattern

Listing different vaults

• Some users have access to multiple vaults (see obj_df)
• Use -v flag on all obj tools to specify a vault
• The default vault is the same as your username (may not exist)

Putting data onto the object store

• Use obj_put
• Numerous options –

we’ll go through some
of the more important

Putting data onto the object store

• Use prefix (-p, --prefix) to
make a “directory”, e.g. ”-
p new_results/”
• Trailing slash is important!

• Use -F (--full-objname) to
have the object name be
the full path on the
system.
• Use -R to recursively copy

data.
• Not shown: checksum

and progress bar options

An example

Getting the data back with obj_get

• Like obj_put, has a lot of
options
• Several are important!
• If you stored a checksum,

use the -c flag to
compare against it.

Getting the data back with obj_get

• Note use of -r, -o, and -p
• Rely on having metadata

associated w/ the object.
• Probably will not work

unless placed with
obj_put.
• Overriden by -D

• --strip requires -D
• --stdout is a very useful

option
• Stream object data to

programs

Streaming to stdout example

• Useful for piping into commands
• See the --stdin option to obj_put to stream data TO the object store
• WARNING: this could be way too slow if your program outputs data quickly!

Practice time!

• Copy /data/classes/objectstore to your data directory
• Copy the file lamb.txt to your object store vault
• Verify that the copy is there. How did you do this?
• Read the data back from the object store two different ways

• Stream it to standard output
• Read it back to a file in a new directory called lamb2

• Upload the data fruits.txt in the “some_files” directory to your object store
vault
• Sort the fruits.txt data alphabetically (use the Linux sort command), output

the results to your data directory, and then copy the sorted file to the
object store.

Permissions and obj_chmod

• By default, objects in a vault are only visible to users who have access
rights to that vault.
• Vaults are treated similarly to shared data directory: requestor becomes the

vault owner who can add or delete users.
• Users can have read-only or read-write permissions

• A user who has write permission on a vault can make an object
publicly visible.
• Use obj_chmod to set “private” or “public-read” permissions
• Available via HTTP “wget -O output http://os1naccess1/vault/object”
• Not accessible beyond the NIH HPC systems, but this will change

http://os3access1/vault/object

Using the obj command

• obj is a single command that gives access to all object commands
• See “obj help” for usage
• E.g. “obj put” calls “obj_put”
• One additional function – “obj url”, prints a URL of a publicly-available object

• Use in conjunction with obj_chmod
• URL is only reachable within the HPC systems!

Overview of Rclone

• Another tool for copying/synchronizing data between file storage and
object storage
• Specializes in synchronizing entire directories to/from object storage
• Like rsync, but for the object store
• Not the most convenient tool for single files, but more convenient than obj_*

for lots of data
• In addition to the HPC object store, can talk to other systems (S3,

DreamHost, etc.).
• Remember to use --no-check-certificate when using with the HPC

object store (might want an alias)
• Web site https://hpc.nih.gov/apps/rclone.html

https://hpc.nih.gov/apps/rclone.html

Configuring rclone

• Load the module
• module load rclone

• Configure:
• rclone config
• Remember what you named your object store (or check ~/.rclone.cfg or

~/.config/rclone/)

• For HPC object store
• Choose Amazon S3 storage
• Enter object key and secret key
• For region – choose S3 clone that understands v2 signatures (12)
• Enter os1naccess2 as the endpoint (can use os{1,2}naccess{1,2,3})
• Leave other items as default
• See example at https://hpc.nih.gov/apps/rclone.html!

https://hpc.nih.gov/apps/rclone.html

Using rclone

• Important argument “--no-check-certificate”
• Needed for NIH HPC object store, since it uses self-signed SSL certificate

• Vaults are denoted <storage-system-name>:<vault-name>
• E.g. nihhpc-obj:btmiller
• The storage system name is what you defined it to be when configuring rclone!

• “rclone ls” – list a directory
• E.g. “rclone ls nihhpc-obj:btmiller”
• “rclone lsd” will list only directories

• “rclone copy” – copy from source to destination

• “rclone move” – move from source to destination

• “rclone (purge|rmdir)” – removes paths

• Sources and destinations can be
• Object store (HPC or other)
• Filesystem paths

Exercises

• Read “rclone --help”
• Configure rclone to access your object store vault
• Use rclone to view the contents of your object store vault.
• Using rclone, upload the “some_files” subdirectory of the object store

class examples to your vault.
• Copy just the files with “some_files” in their object name to a new

directory with rclone.
• Sort some_files/a_subdirectory/famous_computers.txt by system

name, then upload the results (via rclone) to a new object named
some_files/a_subdirectory/famous_computers_byname.txt

Some notes on metadata

• Metadata = data about data
• Traditional file metadata
• Ownership
• Permissions
• Name
• Disk location
• Arbitrary?

• Object storage metadata
• Arbitrary key-value pairs
• Permissions handled

separately via ACL
• (Re-)Creation time set

automatically

Using metadata on the object storage

• Needs to be accessed via the object API or via “-m” flag to obj_put

• E.g. set_metadata, get_metadata methods in Boto (more on this later)

• obj_put, obj_get are examples – store (and retrieve) filesystem path

for an object.

• You might want to use metadata for…

• Anonymized sample identifiers

• Type of machine/analysis program used to generate the data

• Any input paths, objects

• Just about anything else you can think of that is not part of the object’s data

itself!

A practical example using the object store

• Put raw data (gzipped fastq files) into the object store
• Align the fastq files using STAR (read data directly from object

storage)
• Create bigWig coverage
• Make coverage available via Genome browser
• Visualize the data

Putting example data into the object store

Align data from the object store with STAR

Align data from the object store with STAR

Note the use of input
redirection combined
with obj get

Create bigWig of coverage

• Uses local output files from STAR
• Puts results back on the object store for later access

Make bigWig available to CIT genome
browser

Visualize track

Visualize track

Use URL from ”obj url”!

Visualize track

Outline

• Overview of the object storage
• A first practical example
• When would you want to use object storage?
• How do you get access to the object storage?
• Using the NIH HPC object storage
• HPC staff developed tools
• Rclone

• Programming your own tools

Programming your own tools

• Why?
• Need to customize functionality, e.g. reading metadata from objects.
• Combining reading/writing data to object store with calculations.
• Complicated access patterns – e.g. reading and writing multiple objects

simultaneously.

• Why not?
• Requires knowledge of Python, Perl, Ruby, C++, etc.

• NIH HPC developed object tools are all in Python – can use as examples
• If existing tools satisfy your needs, there’s not much point
• HPC staff fully supports “our” tools (and others like Rclone) – much less

support for custom development

Programming workflow

Open Connection
(Need accessor address,

credentials)

Open Vault/Bucket
(Need to know name)

OPTIONAL: List
content

(can be slow)

OPTIONAL: operate on content
(create key, get key, etc.)

May need to know object names

Close Connection

Programming in Python: Boto library

• I’ve had more luck with boto v2 than boto v3
• Boto v3 is not compatible with our object store L.

• Getting a bucket (vault):

Programming in Python: Boto library

• I’ve had more luck with boto v2 than boto v3
• Boto v3 is not compatible with our object store L.

• Listing contents:

Programming in Python: Boto library

• I’ve had more luck with boto v2 than boto v3
• Boto v3 is not compatible with our object store L.

• Deleting an object:

Programming in Python: Boto library

• I’ve had more luck with boto v2 than boto v3
• Boto v3 is not compatible with our object store L.

• Putting data:

Programming in Python: Boto library

• I’ve had more luck with boto v2 than boto v3
• Boto v3 is not compatible with our object store L.

• Getting data:

Wrap-up, summary

• Object store is good for data that is…
• Read-only in nature
• Needs to be used regularly for computation
• Only needs moderate performance

• The object store cannot be used for…
• Write-intensive data
• Data that gets updated frequently
• Archival data (until we make the limited archive available)

• Multiple different tools may be used to read and write data
• You can write your own tools in a variety of programming languages

staff@hpc.nih.gov

Thank you

• Thank you for attending
• Please contact us with questions/feedback
• Tim Miller – btmiller@helix.nih.gov
• staff@hpc.nih.gov

mailto:btmiller@helix.nih.gov
mailto:staff@hpc.nih.gov

